Your Blog

Included page "clone:klavsen65salisbury" does not exist (create it now)

Accomplishing Your Goals With Effective Internet Market - 20 Feb 2018 21:19

Tags:

Internet marketing is a critical part of doing business today, so every business owner should know something about it. You are about to learn what you need to know regarding Internet marketing and developing your own methods.

Site-wide links are links that show up on each of your site's pages. In most cases, you'll find these on the lower half of a webpage. They tend to link to things such as contact pages or the site's menu. If you are trying to steer your web visitors to a particular page of content, these links will enable you to do this. This will make your website much easier to navigate.

Your HTML design will rely heavily on meta tags. Even though people can not see your meta tags, search engines use them to discover more information about your website. To get the most accurate classification, order your meta tags with the most important first. Keep the number of meta tags low but use different versions of the keyword. Research which keywords are associated with and most used with the product you are trying to sell.

In HTML, "H tags" are used to indicate the relative importance of sections of text. The bold tag is used to highlight a part of the text that is important. It is helpful to include these tags in your site's title and paragraphs. Using the bold tag will make it easier for your visitors to maneuver through your site and find the information that they are looking for. It will also assist search engine spiders in identifying where the important content is located in a quicker manner. Each title should include relevant keywords.

Look for various methods of utilizing the Internet to promote your merchandise. Sticking to what works best is good, but there are always new and better ideas out there. Trends can spread like wildfire, and if you jump on board, your sales can soar while the trend spreads. There is no easy method on how to know what will be an internet hit, but if you use creative and unique content, something will surely work. Monitor Youtube, Reddit and other similar sites, and find out what users are interested in there.

The following internet marketing ideas are merely a small sample of what you can achieve. While using these tips you will begin to grow more confident and start thinking of some creative marketing ideas of your own. Once you do, share what you have learned with others as a fantastic way of networking. - Comments: 0

Office / Indoor Air Quality – Investigating IAQ Complai - 16 Feb 2018 17:21

Tags:

The air quality of the indoor environment such as a non-industrial office environment can significantly affect the health, comfort, and productivity of building occupants.

Indoor air quality (IAQ) in the workplace, such an office environment, is the subject of much attention recently, and for good reason. Although serious irreversible health problems related to IAQ in non-industrial office environments are rare, the perception of endangered health is increasingly common among building occupants.

To date, the causes and consequences of poor IAQ are complex and not completely understood, but there are some basic factors that in many cases address IAQ concerns.

IAQ is a problem when the air contains dust and objectionable odours, chemical contaminants, dampness, mould or bacteria.

Poor indoor air quality can lead to a number of physical symptoms and complaints. The most common of these include:

Thermal discomfort: too hot or too cold

Headaches

Fatigue

Shortness of breath (eg. insufficient oxygen related to high carbon dioxide levels)

Sinus congestion

Coughs

Sneezing

Eye, nose, and throat irritation

Skin irritation

Dizziness

Nausea

Skin irritation

These physical symptoms and complaints are often attributed to indoor air quality, however, it is important to note that indoor air quality is not always the cause. Other factors in the indoor environment such as noise, overcrowding, improper lighting, poor ergonomic conditions, and job stress can also lead to these symptoms and complaints. In many situations, a combination of factors is to blame.

An increased likelihood of complaints is usually associated with factors such as the installation of new furnishings, uncontrolled renovation activities, poor air circulation and air flow, persistent moisture and ongoing low relative humidity. Complaints may also increase when there is a stressful work environment, such as impending layoffs, a great deal of overtime, or an ongoing conflict among staff members and management.

A number of factors can affect the indoor air quality of a building or facility, including:

The physical layout of the building

The building’s heating, ventilation, and air conditioning (HVAC) system

The outdoor climate

The people who occupy the building

Contaminants emitted inside and entered from outside the building

Poor indoor air quality and indoor air contaminants affect some people more seriously, including:

People with allergies or asthma

People with respiratory disease

People whose immune system is suppressed as a result of disease or treatment

People who wear contact lenses

Indoor air contaminants can originate within a building or be drawn in from outdoors. These contaminants can lead to indoor air quality problems, even if the HVAC system is well designed, regularly maintained, and functioning to its optimum conditions.

Sources of contaminants inside the building environment may include:

Dust, dirt, or mould in the HVAC system (eg. cooling coils, ducts, registers)

Office equipment such as laser printers and copiers (eg. airborne particulates, ozone)

Personal activities such as smoking or cooking (eg. Volatile organic compounds, nicotine)

Housekeeping activities such as cleaning and dusting

https://www.sesa.com.au/asbestos-testing-and-analysis.html

Maintenance activities such as painting (eg. Volatile organic compounds)

Spills of water or other liquids

Special use areas such as print shops and laboratories

Industrial processes such as dry cleaning

Moisture affected building materials (eg. mould and bacteria)

Sources of contaminants from outside the building may include:

Vehicle exhaust

Pollen and dust (eg. long term build up if cleaning regime is inadequate)

Smoke

Unsanitary debris or dumpsters near the outdoor air intake

Depending on the complaint reported by building occupants, an indoor air quality investigation should include the following:

Interview with building occupants to identify potential causes such as identifiable odours, recent changes that may have caused the issue, water intrusion event, increased occupancy, cleaning regime, etc.

Assessment of the ventilation rate (generally when the indoor carbon dioxide levels are over 650 parts per million (ppm) above ambient outdoor levels)

Walkthrough inspection of the building and the ventilation system (filters, cooling coils, condensation trays, air ducts, etc.)

Sampling for airborne contaminants suspected to be present in concentrations associated with the reported complaints.

Documenting the complaint, the investigation, and any actions taken.

Occupant concerns regarding indoor air quality should be taken seriously and responded to as soon as possible. Initial information should be collected, checked and verified, preferably through interviews with occupants and a visual inspection:

Details about the specific complaint

Location(s) of the building where similar concerns about IAQ have been reported

Time of occurrence of the IAQ problem

When and where did it start and what has changed in the building just before the problem was first experienced

People affected and extent of the affected area(s)

Specific details on the health effects or discomfort occupants are experiencing

If the health effects stop soon after leaving the building, or over the weekend

If the symptoms have been diagnosed by a medical practitioner

If there are any identifiable practices inside or outside the building occurring at a time coinciding with the reported issues

If the air conditioning contractor or the building engineer evaluated the HVAC system or other conditions and the conclusions reached

Once the information above is gathered and analysed the walkthrough inspection by a specialist indoor air quality consultant should be undertaken to identify potential sources of contamination or unusual conditions. Generally, at this stage the IAQ consultant should be able to narrow the possibilities and developing air sampling strategy if required to confirm potential causes of the IAQ problem and decide on suitable solutions or if further investigation is required.

Generally, most IAQ issues can be resolved by addressing maintenance issues of the HVAC system (eg. air exchange rates, improved ventilation and air flow, filter change and disinfection of the internal surfaces of the air handling unit and the air ducts), HEPA vacuuming of the entire space, building repairs, addressing moisture issues, removing potential sources of contamination, implementing a new cleaning regime).

Under the Work Health & Safety Legislation, it is the duty of the person conducting a business or undertaking (PCBU) to provide a work environment that is free from risks to health and safety.

If you require assistance regarding the indoor air quality at your workplace please contact SESA on 02 8786 1808

First posted here https://www.sesa.com.au/14-indoor-air-quality/office-indoor-air-quality-investigating-iaq-complaints.html - Comments: 0

Great Advice On Planning Your Home Improvement Project - 15 Feb 2018 08:57

Tags:

Many people experience great difficulty when they attempt home-improvement projects, but the process does not need to be as difficult or painful as you might think. Home improvement can be accomplished by anyone, if you have the right information. This article is meant to guide you through the home-improvement process with helpful hints and tips.

decking Perth

Considering the cost of hiring a plumber, you will probably want to do some of the simpler plumbing tasks yourself. An essential tool is the pipe wrench. It is adjustable, so it can fit a pipe perfectly, and it provides an excellent grip and leverage. This one tool will more than pay for itself.

Self adhesive drywall patches are a must-have home improvement. These patches come in many forms ranging from mesh drywall tape to those made of a polymer material. Press them carefully into place using an iron. Be careful not to scorch the patch or the wall surface. Paint right over the patch and you'll never know it's there.

Displaying buttons on a spice rack can be a great way to give your home a cottage style feel, as well as, making a focal point in your living room. Buy some small old fashioned apothecary jars and fill them with buttons assorted by color. Arrange them in a pleasing manner on your spice rack and you have yourself, a great focal point.

To avoid costly mistakes when painting a room, make a small investment in the paint samples that many retailers offer. You can get 8 ounce sample sizes in any available color. For a small cost, you can apply paint to a big enough area to really get a feel for how the paint will look, much more accurately than with paint chips alone.

If starting a remodel in your bathroom or kitchen, remember to turn off the supply of water going to these rooms prior to starting work on plumbing and fixtures. While this seems like an obvious step, many people do forget, causing big floods that can lead to water damage.

Your house can look more chic by adding a little garden area in the front. First decide what kinds of plants are able to grow in your climate and purchase them from a store. Plant them in a nice design near your porch or doorstep. For a nicer and cleaner finish, add some small fencing around your garden area to fully define the space.

If you need fencing that is both affordable and versatile, opt for a wooden fence. You can choose from a variety of wood types to find the most appropriate material for your particular climate and moisture levels. Wooden fencing is very diverse and can easily be stained to one of many natural-looking colors.

If you're in a fire-prone area and worry about fencing materials, try white or red cedar fences. Cedar wood is well-loved for its durability and distinctive fragrance; it is also rated highly for safety in areas that are potentially threatened by wildfires.

Those who live in a dry climate are better off with white or red cedar fences. Cedar is good because of its safety with regards to wildfires.

Inspect your fencing regularly for holes and places where it may have come loose in a storm. This is particularly important if you have young children and pets. Remember that fencing works two ways. It works to keep your children and pets in your yard and it works to keep other people's children and pets out of your yard!

Inspect your fencing regularly for holes and places where it may have come loose in a storm. This is particularly important if you have young children and pets. Remember that fencing works two ways. It works to keep your children and pets in your yard and it works to keep other people's children and pets out of your yard!

Now you can start improving your home, since you are prepared. While you may feel you know a lot, there is always more to learn. It is our sincere hope that these tips have given you the basis for a strong start on your home improvement plans and a happy and successful completion. - Comments: 0

Office / Indoor Air Quality – Investigating IAQ Complai - 14 Feb 2018 08:43

Tags:

The air quality of the indoor environment such as a non-industrial office environment can significantly affect the health, comfort, and productivity of building occupants.

Indoor air quality (IAQ) in the workplace, such an office environment, is the subject of much attention recently, and for good reason. Although serious irreversible health problems related to IAQ in non-industrial office environments are rare, the perception of endangered health is increasingly common among building occupants.

To date, the causes and consequences of poor IAQ are complex and not completely understood, but there are some basic factors that in many cases address IAQ concerns.

IAQ is a problem when the air contains dust and objectionable odours, chemical contaminants, dampness, mould or bacteria.

Poor indoor air quality can lead to a number of physical symptoms and complaints. The most common of these include:

Thermal discomfort: too hot or too cold

Headaches

Fatigue

Shortness of breath (eg. insufficient oxygen related to high carbon dioxide levels)

Sinus congestion

Coughs

Sneezing

Eye, nose, and throat irritation

Skin irritation

Dizziness

Nausea

Skin irritation

These physical symptoms and complaints are often attributed to indoor air quality, however, it is important to note that indoor air quality is not always the cause. Other factors in the indoor environment such as noise, overcrowding, improper lighting, poor ergonomic conditions, and job stress can also lead to these symptoms and complaints. In many situations, a combination of factors is to blame.

An increased likelihood of complaints is usually associated with factors such as the installation of new furnishings, uncontrolled renovation activities, poor air circulation and air flow, persistent moisture and ongoing low relative humidity. Complaints may also increase when there is a stressful work environment, such as impending layoffs, a great deal of overtime, or an ongoing conflict among staff members and management.

A number of factors can affect the indoor air quality of a building or facility, including:

The physical layout of the building

The building’s heating, ventilation, and air conditioning (HVAC) system

The outdoor climate

The people who occupy the building

Contaminants emitted inside and entered from outside the building

Poor indoor air quality and indoor air contaminants affect some people more seriously, including:

People with allergies or asthma

People with respiratory disease

People whose immune system is suppressed as a result of disease or treatment

People who wear contact lenses

Indoor air contaminants can originate within a building or be drawn in from outdoors. These contaminants can lead to indoor air quality problems, even if the HVAC system is well designed, regularly maintained, and functioning to its optimum conditions.

Sources of contaminants inside the building environment may include:

Dust, dirt, or mould in the HVAC system (eg. cooling coils, ducts, registers)

Office equipment such as laser printers and copiers (eg. airborne particulates, ozone)

Personal activities such as smoking or cooking (eg. Volatile organic compounds, nicotine)

Housekeeping activities such as cleaning and dusting

Maintenance activities such as painting (eg. Volatile organic compounds)

Spills of water or other liquids

Special use areas such as print shops and laboratories

Industrial processes such as dry cleaning

SESA

Moisture affected building materials (eg. mould and bacteria)

Sources of contaminants from outside the building may include:

Vehicle exhaust

Pollen and dust (eg. long term build up if cleaning regime is inadequate)

Smoke

Unsanitary debris or dumpsters near the outdoor air intake

Depending on the complaint reported by building occupants, an indoor air quality investigation should include the following:

Interview with building occupants to identify potential causes such as identifiable odours, recent changes that may have caused the issue, water intrusion event, increased occupancy, cleaning regime, etc.

Assessment of the ventilation rate (generally when the indoor carbon dioxide levels are over 650 parts per million (ppm) above ambient outdoor levels)

Walkthrough inspection of the building and the ventilation system (filters, cooling coils, condensation trays, air ducts, etc.)

Sampling for airborne contaminants suspected to be present in concentrations associated with the reported complaints.

Documenting the complaint, the investigation, and any actions taken.

Occupant concerns regarding indoor air quality should be taken seriously and responded to as soon as possible. Initial information should be collected, checked and verified, preferably through interviews with occupants and a visual inspection:

Details about the specific complaint

Location(s) of the building where similar concerns about IAQ have been reported

Time of occurrence of the IAQ problem

When and where did it start and what has changed in the building just before the problem was first experienced

People affected and extent of the affected area(s)

Specific details on the health effects or discomfort occupants are experiencing

If the health effects stop soon after leaving the building, or over the weekend

If the symptoms have been diagnosed by a medical practitioner

If there are any identifiable practices inside or outside the building occurring at a time coinciding with the reported issues

If the air conditioning contractor or the building engineer evaluated the HVAC system or other conditions and the conclusions reached

Once the information above is gathered and analysed the walkthrough inspection by a specialist indoor air quality consultant should be undertaken to identify potential sources of contamination or unusual conditions. Generally, at this stage the IAQ consultant should be able to narrow the possibilities and developing air sampling strategy if required to confirm potential causes of the IAQ problem and decide on suitable solutions or if further investigation is required.

Generally, most IAQ issues can be resolved by addressing maintenance issues of the HVAC system (eg. air exchange rates, improved ventilation and air flow, filter change and disinfection of the internal surfaces of the air handling unit and the air ducts), HEPA vacuuming of the entire space, building repairs, addressing moisture issues, removing potential sources of contamination, implementing a new cleaning regime).

Under the Work Health & Safety Legislation, it is the duty of the person conducting a business or undertaking (PCBU) to provide a work environment that is free from risks to health and safety.

If you require assistance regarding the indoor air quality at your workplace please contact SESA on 02 8786 1808

First posted here https://www.sesa.com.au/14-indoor-air-quality/office-indoor-air-quality-investigating-iaq-complaints.html - Comments: 0

Asbestos Disposal - 03 Feb 2018 01:49

Tags:

Asbestos turned more and more widespread amongst producers and builders in the late nineteenth century due to its sound absorption, common tensile energy , its resistance to fireside , warmth, electrical and chemical damage, and affordability. It was utilized in such applications as electrical insulation for hotplate wiring and in building insulation When asbestos is used for its resistance to fireside or warmth, the fibers are often mixed with cement (resulting in asbestos cement ) or woven into fabric or mats.

Friable examples embody, limpet (sprayed fire proofing / coatings, thermal and acoustic insulation applications) pipe and boiler lagging, and so on. WorkSafe Victoria is the supervisor of Victoria's workplace security system. WorkSafe Victoria enforces Victoria's occupational well being and security legal guidelines, helps injured workers again into the workforce and manages the workers' compensation scheme by ensuring the immediate delivery of appropriate companies and adopting prudent monetary practices. AWARE are one of many few corporations providing ‘A Class' asbestos removing companies. Don't belief your again yard to a back-yarder. Contact AWARE right now.

The view of the MAV is at odds with that of Asbestoswise. I do suppose essentially the most appropriate place for this data is probably local government,” Mr Fergus stated. But he added that a new federal body to handle asbestos eradication ought to help organise responses. Despite its prominence in Australian information, only a few individuals realise simply how frequent the use of asbestos once was. A thorough clearance inspection must be carried out before an asbestos work area may be re-occupied.

It is the responsibility of importers and exporters to make sure they don't import or export prohibited items comparable to asbestos. We have to be assured that no asbestos is current on the time of import or export. Contact the closest MassDEP or DLS office and your Local Board of Health. On weekends and holidays name 1-888-304-1133, the emergency response system.
<img class="aligncenter" style="display: block;margin-left:auto;margin-right:auto;" src="http://www.mesothelioma.com/images/asbestos-cancer.jpg" width="258" alt="worksafe victoria asbestos removalists" />

The fibrosis of this illness is irreversible and permanent so that eventually compensation can be paid to every of those males. But, as long as the man shouldn't be disabled it is felt that he shouldn't be instructed of his condition in order that he can reside and work in peace and the company can profit by his a few years of expertise. As at August 2014, no company with a restricted license had applied to be included on our Asbestos Removalist List.

Most individuals who develop asbestos-associated diseases have labored on jobs where they frequently breathed in giant quantities of asbestos fibres. For example, prior to now, construction employees utilizing unsafe practices may have frequently encountered asbestos fibre levels effectively above background levels. Some may have also carried asbestos fibres house on their clothing, pores and skin and hair, and uncovered members of the family to the fibres.

The mannequin WHS Regulations also set out a new licence class for asbestos assessors. The position of the licensed asbestos assessor is to hold out air monitoring and clearance inspections following removing of friable asbestos. Asbestos alternate options for industrial use include sleeves, rope, tape, material, textiles and insulation batt supplies made out of fiberglass and silica.
<div style="text-align:center"></div>

Asbestos Exposure &amp; Risk of Developing Asbestos Related Disease - Comments: 0

Office / Indoor Air Quality – Investigating IAQ Complai - 02 Feb 2018 02:10

Tags:

The air quality of the indoor environment such as a non-industrial office environment can significantly affect the health, comfort, and productivity of building occupants.

Indoor air quality (IAQ) in the workplace, such an office environment, is the subject of much attention recently, and for good reason. Although serious irreversible health problems related to IAQ in non-industrial office environments are rare, the perception of endangered health is increasingly common among building occupants.

To date, the causes and consequences of poor IAQ are complex and not completely understood, but there are some basic factors that in many cases address IAQ concerns.

IAQ is a problem when the air contains dust and objectionable odours, chemical contaminants, dampness, mould or bacteria.

Poor indoor air quality can lead to a number of physical symptoms and complaints. The most common of these include:

Thermal discomfort: too hot or too cold

Headaches

Fatigue

Shortness of breath (eg. insufficient oxygen related to high carbon dioxide levels)

lead dust testing

Sinus congestion

Coughs

Sneezing

Eye, nose, and throat irritation

Skin irritation

Dizziness

Nausea

Skin irritation

These physical symptoms and complaints are often attributed to indoor air quality, however, it is important to note that indoor air quality is not always the cause. Other factors in the indoor environment such as noise, overcrowding, improper lighting, poor ergonomic conditions, and job stress can also lead to these symptoms and complaints. In many situations, a combination of factors is to blame.

An increased likelihood of complaints is usually associated with factors such as the installation of new furnishings, uncontrolled renovation activities, poor air circulation and air flow, persistent moisture and ongoing low relative humidity. Complaints may also increase when there is a stressful work environment, such as impending layoffs, a great deal of overtime, or an ongoing conflict among staff members and management.

A number of factors can affect the indoor air quality of a building or facility, including:

The physical layout of the building

The building’s heating, ventilation, and air conditioning (HVAC) system

The outdoor climate

The people who occupy the building

Contaminants emitted inside and entered from outside the building

Poor indoor air quality and indoor air contaminants affect some people more seriously, including:

People with allergies or asthma

People with respiratory disease

People whose immune system is suppressed as a result of disease or treatment

People who wear contact lenses

Indoor air contaminants can originate within a building or be drawn in from outdoors. These contaminants can lead to indoor air quality problems, even if the HVAC system is well designed, regularly maintained, and functioning to its optimum conditions.

Sources of contaminants inside the building environment may include:

Dust, dirt, or mould in the HVAC system (eg. cooling coils, ducts, registers)

Office equipment such as laser printers and copiers (eg. airborne particulates, ozone)

Personal activities such as smoking or cooking (eg. Volatile organic compounds, nicotine)

Housekeeping activities such as cleaning and dusting

Maintenance activities such as painting (eg. Volatile organic compounds)

Spills of water or other liquids

Special use areas such as print shops and laboratories

Industrial processes such as dry cleaning

Moisture affected building materials (eg. mould and bacteria)

Sources of contaminants from outside the building may include:

Vehicle exhaust

Pollen and dust (eg. long term build up if cleaning regime is inadequate)

Smoke

Unsanitary debris or dumpsters near the outdoor air intake

Depending on the complaint reported by building occupants, an indoor air quality investigation should include the following:

Interview with building occupants to identify potential causes such as identifiable odours, recent changes that may have caused the issue, water intrusion event, increased occupancy, cleaning regime, etc.

Assessment of the ventilation rate (generally when the indoor carbon dioxide levels are over 650 parts per million (ppm) above ambient outdoor levels)

Walkthrough inspection of the building and the ventilation system (filters, cooling coils, condensation trays, air ducts, etc.)

Sampling for airborne contaminants suspected to be present in concentrations associated with the reported complaints.

Documenting the complaint, the investigation, and any actions taken.

Occupant concerns regarding indoor air quality should be taken seriously and responded to as soon as possible. Initial information should be collected, checked and verified, preferably through interviews with occupants and a visual inspection:

Details about the specific complaint

Location(s) of the building where similar concerns about IAQ have been reported

Time of occurrence of the IAQ problem

When and where did it start and what has changed in the building just before the problem was first experienced

People affected and extent of the affected area(s)

Specific details on the health effects or discomfort occupants are experiencing

If the health effects stop soon after leaving the building, or over the weekend

If the symptoms have been diagnosed by a medical practitioner

If there are any identifiable practices inside or outside the building occurring at a time coinciding with the reported issues

If the air conditioning contractor or the building engineer evaluated the HVAC system or other conditions and the conclusions reached

Once the information above is gathered and analysed the walkthrough inspection by a specialist indoor air quality consultant should be undertaken to identify potential sources of contamination or unusual conditions. Generally, at this stage the IAQ consultant should be able to narrow the possibilities and developing air sampling strategy if required to confirm potential causes of the IAQ problem and decide on suitable solutions or if further investigation is required.

Generally, most IAQ issues can be resolved by addressing maintenance issues of the HVAC system (eg. air exchange rates, improved ventilation and air flow, filter change and disinfection of the internal surfaces of the air handling unit and the air ducts), HEPA vacuuming of the entire space, building repairs, addressing moisture issues, removing potential sources of contamination, implementing a new cleaning regime).

Under the Work Health &amp; Safety Legislation, it is the duty of the person conducting a business or undertaking (PCBU) to provide a work environment that is free from risks to health and safety.

If you require assistance regarding the indoor air quality at your workplace please contact SESA on 02 8786 1808

First posted here https://www.sesa.com.au/14-indoor-air-quality/office-indoor-air-quality-investigating-iaq-complaints.html - Comments: 0

Asbestos Exposure & Risk of Developing Asbestos Related - 01 Feb 2018 18:24

Tags:

Asbestos is a naturally occurring rock forming mineral silicate in fibrous form belonging to the serpentine and amphibole groups. It occurs naturally in large deposits on every continent in the world. There are six types of naturally occurring asbestos fibres of which only three have been used commercially in Australia. These included the serpentine: Chrysotile (white asbestos); and the amphiboles: Crocidolite (blue asbestos) and Amosite (brown or grey asbestos). The other three non-commercially used amphiboles included Tremolite, Actinolite and Anthophyllite.

Asbestos has been used in the ancient world of the Egyptians, Greeks and Romans. It is believed that as early as 4000 BC, asbestos fibres were used for wicks in lamps and candles. Between 2000-3000 BC, embalmed bodies of Egyptian pharaohs were wrapped in asbestos cloth. The Greeks and Romans documented the harmful effects of asbestos fibres on those who mined the silken material from ancient stone quarries noting a “sickness of the lungs” in slaves who wove asbestos into cloth.

The commercial use of asbestos commenced in the late 1800s in Australia in four main industries including Mining and Milling; Building &amp; Construction (for strengthening cement and plastics, for insulation, fireproofing and sound absorption); Ship Building (eg. insulation of boilers and steampipes) and the Automotive Industry (eg. vehicle brake shoes, gaskets and clutch pads).

There were over 3000 products (Asbestos Containing Materials or ACM) manufactured with asbestos fibres. The ACM fall into two broad categories: friable and non-friable (or bonded).

‘Friable’ is ACM that can be easily reduced to powder when crushed by hand, when dry. These materials can contain higher percentages of asbestos fibres and are easily or more likely to release airborne fibres into the environment with minimal disturbance. As such, they pose a greater risk to health. Friable materials must only be handled and removed by an asbestos removalist with Class A Asbestos Removal Licence. Examples of friable asbestos-containing materials include sprayed on fire retardants, insulation (eg. millboard, pipe insulation), sound proofing, the lining on some old domestic heaters, stoves and hot water systems and associated pipe lagging, the backing of sheet vinyl and linoleum floor coverings, thermal lagging, some vermiculite.

‘Non-friable’, or bonded ACM is used to refer to ACM in which the asbestos is firmly bound in the matrix of the material. These materials are unlikely to release measurable levels of airborne asbestos fibre into the environment if they are undisturbed. Therefore, they generally pose a lower risk to health. However, activities that may abrade the ACM such as drilling, grinding have the potential to release higher concentrations of airborne asbestos fibres into the environment. The non-friable ACM are mainly made up of asbestos fibres together with a bonding compound (such as cement), and typically contain up to 15 per cent asbestos. Non-friable ACM are solid, quite rigid and the asbestos fibres are tightly bound in the material. Non-friable ACM are the most common in domestic houses. They are commonly called ‘fibro’, ‘asbestos cement’ and ‘AC sheeting’. Examples of non-friable ACM include asbestos cement products (flat, profiled and corrugated sheeting used in walls, ceilings and roofs, moulded items such as downpipes) and vinyl floor tiles.

While asbestos is a hazardous material it can only pose a risk to health if the asbestos fibres become airborne in respirable size, are inhaled and lodge deep into the lungs (in the alveoli). Inhalation is the main route of entry to the body. Respirable fibres are fibres that are more likely to reach the small airways and alveolar region of the lung and are defined as having a length of more than five microns, and an aspect ratio (length/width) greater than 3:1.

Asbestos is classified according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) as Carcinogenicity Category 1A (May cause cancer).

There are several asbestos related diseases that may result from the exposure to asbestos which depends on factors such as fibre type; size and shape of fibres; concentration of asbestos fibres in the inhaled air and period of time over which the person was exposed. The asbestos related diseases include:

Asbestosis

Pleural plaques

Malignant mesothelioma of the pleura and peritoneum

Lung cancer

Benign asbestos pleural effusion

Progressive pleural fibrosis (diffuse pleural thickening)

Transpulmonary bands (crow’s feet)

Rounded atelectasis

https://www.sesa.com.au/occupational-health-safety-ohs-consultants-sydney-nsw-act.html

All asbestos related diseases have a latency period that is the period commencing from the time of the exposure to the asbestos fibres first occurred until symptoms of a disease show. This may range from 10 – 50 years for the asbestos related diseases.

Workplace exposures to asbestos fibres first occurred while mining asbestos, manufacturing asbestos containing products or using those products during the construction of buildings. Currently, the main source of exposure to asbestos fibres is during the maintenance, renovation or demolition of old buildings with asbestos containing materials.

Asbestos containing materials are subject to environmental weathering which causes them to breakdown and release asbestos fibres. Low levels of airborne asbestos fibres are encountered in the environment from the breakdown of asbestos products. Environmental weathering of asbestos cement sheets in roofing and wall cladding, disturbance of asbestos from a variety of building materials like insulation and asbestos release to air from clutches and brakes in cars and trucks results in asbestos fibres being dispersed in the environment.

According to Australian Government Department of Health website, we are all exposed to low levels of asbestos in the air we breathe every day. Ambient or background air usually contains between 10 and 200 asbestos fibres in every 1000 litres (or cubic metre) of air (equivalent to 0.01 to 0.20 fibres per litre of air). However, most people do not become ill from this exposure, because the levels of asbestos present in the environment are very low. Most people are also exposed to higher levels of asbestos at some time in their lives; for example, in their workplace, community or home. However, for most people, this kind of infrequent exposure is also unlikely to result in any ill effects.

Safe Work Australia states that “the typical environmental background in outdoor air is 0.0005 fibres/ml and 0.0002 fibres/ml in indoor air. The daily inhalation volume for an average adult is 22 m3 or 22000 litres. This means 5500 fibres are breathed/day by the average person (proportion of time spent indoors = 20 hours/day). Despite this the general population does not contract asbestos related disease in significant numbers. The background rate of mesothelioma is less than one per million per year. By comparison, the annual death rate for a 40 year old male in 2008 was 1.6 per thousand or 1600 per million. However, there is no absolutely safe level of exposure to asbestos fibres.

Most people who develop asbestos related diseases were workers who have worked on jobs where they frequently breathed in large amounts of asbestos fibres. As an example, construction workers using unsafe practices in the past may have frequently encountered asbestos fibre levels significantly higher than those levels found in the background. The current workplace exposure standard (time weighted average (TWA) over an eight-hour period) is 0.1 fibres/millilitre of air (100 fibres per litre which is between 500 and 10,000 times the background levels). In the past, workers in asbestos milling or mining often encountered fibre concentrations a million times higher than background levels. In 2011, 606 deaths were caused by mesothelioma and 125 deaths were caused by asbestosis in Australia.

Family members of exposed workers or those who lived close to active asbestos mines in the past are also at risk. A worker exposed to asbestos fibres or a home renovator can carry asbestos fibres on their clothing, boots, skin, hair and tools. Everyone should be alert to ensure they do not become exposed to these fibres.

A very small number of asbestos-related disease cases occur each year in people who have not worked with asbestos products. The low number of cases makes it difficult to determine the exact cause of the disease or the likely exposure event, but unsafe handling of asbestos materials in the home may have contributed to some of these cases.

The uncontrolled disturbance of asbestos containing materials must be avoided at any time to prevent the release of airborne asbestos and increase the risk of exposure to airborne asbestos fibres. The exposure to airborne asbestos fibres should be reduced to as low as reasonably practicable by managing asbestos containing materials in-situ and adopting safe work practices as required by the Work Health &amp; Safety Regulations and Safe Work Australia Codes of Practice “How to Manage &amp; Control Asbestos In the Workplace”: and “ How to Safely Remove Asbestos”.

If you require assistance in asbestos inspection, asbestos testing or asbestos assessment contact SESA on 02 8786 1808.

First posted here https://www.sesa.com.au/15-asbestos/asbestos-exposure-risk-of-developing-asbestos-related-disease.html - Comments: 0

Achieve Greater Success With Internet Marketing - 31 Jan 2018 06:26

Tags:

Do not put all of your eggs in one basket. Use multiple strategies that appeal to a variety of market segments. If you have an online business, internet marketing might be your best option. The following article will give you the basic information you need to become familiar with internet marketing.

Site-wide links are links that appear on every single page of a website. These links often appear at the bottom of pages. These links are useful if you want to direct site visitors to a centralized page, such as an order form or a sales page. It's important to link your menus correctly using site-wide links that are easy to use. Organize the menu logically and describe each link clearly.

Meta tags are important components of your HTML design. Unlike your visitors, search engine spiders can see these tags and will use them to judge how relevant your site is. The location of meta tags is also important. Your most important tags should be placed first. Don't go crazy with meta keywords. Use only the most relevant and important ones. You must discover which keywords are utilized most frequently in your niche and in regard to your product.

H tags are HTML tags that serve a specific purpose. This purpose is to emphasize text, particularly headers. H1 tags will make your text appear large and bold. Use these tags for your titles and the paragraphs that are short, yet important. Include
<h1>, </h1>
<h2>, and </h2>
<h3> tags in each subheading. This will make the page easier to read for your visitors and search engine spiders will be able to quickly identify where the important content is located. Every title should contain relevant keywords to enhance your ranking.

Keep your marketing efforts fresh to keep old customers engaged and to excite new ones. While there is no reason to stop using the strategies that you already employ, you should always look for new ideas to further increase the success of your business. The next video that you post on the internet could become the next viral video, but it won't happen unless you start posting them. Then, everyone will know about it and start talking about you to others. When a video goes viral, its success is usually short-lived, but you will get a lot of exposure while it does last. Since videos going viral is unpredictable, it's best to always keep producing new content. Post your material as often as you can to YouTube and other social media sites. Study other viral videos, and see if there's something there that you can duplicate.

There are many different Internet marketing strategies that are not mentioned here. Apply some of these ideas to your business, and be creative in developing a strategy that works best for you.

</h3> - Comments: 0

Office / Indoor Air Quality – Investigating IAQ Complai - 24 Jan 2018 10:36

Tags:

The air quality of the indoor environment such as a non-industrial office environment can significantly affect the health, comfort, and productivity of building occupants.

Indoor air quality (IAQ) in the workplace, such an office environment, is the subject of much attention recently, and for good reason. Although serious irreversible health problems related to IAQ in non-industrial office environments are rare, the perception of endangered health is increasingly common among building occupants.

To date, the causes and consequences of poor IAQ are complex and not completely understood, but there are some basic factors that in many cases address IAQ concerns.

IAQ is a problem when the air contains dust and objectionable odours, chemical contaminants, dampness, mould or bacteria.

Poor indoor air quality can lead to a number of physical symptoms and complaints. The most common of these include:

Thermal discomfort: too hot or too cold

Headaches

Fatigue

Shortness of breath (eg. insufficient oxygen related to high carbon dioxide levels)

Sinus congestion

Coughs

Sneezing

Eye, nose, and throat irritation

Skin irritation

Dizziness

Nausea

Skin irritation

These physical symptoms and complaints are often attributed to indoor air quality, however, it is important to note that indoor air quality is not always the cause. Other factors in the indoor environment such as noise, overcrowding, improper lighting, poor ergonomic conditions, and job stress can also lead to these symptoms and complaints. In many situations, a combination of factors is to blame.

An increased likelihood of complaints is usually associated with factors such as the installation of new furnishings, uncontrolled renovation activities, poor air circulation and air flow, persistent moisture and ongoing low relative humidity. Complaints may also increase when there is a stressful work environment, such as impending layoffs, a great deal of overtime, or an ongoing conflict among staff members and management.

A number of factors can affect the indoor air quality of a building or facility, including:

The physical layout of the building

The building’s heating, ventilation, and air conditioning (HVAC) system

The outdoor climate

The people who occupy the building

Contaminants emitted inside and entered from outside the building

Poor indoor air quality and indoor air contaminants affect some people more seriously, including:

People with allergies or asthma

People with respiratory disease

People whose immune system is suppressed as a result of disease or treatment

People who wear contact lenses

Indoor air contaminants can originate within a building or be drawn in from outdoors. These contaminants can lead to indoor air quality problems, even if the HVAC system is well designed, regularly maintained, and functioning to its optimum conditions.

Sources of contaminants inside the building environment may include:

Dust, dirt, or mould in the HVAC system (eg. cooling coils, ducts, registers)

Office equipment such as laser printers and copiers (eg. airborne particulates, ozone)

Personal activities such as smoking or cooking (eg. Volatile organic compounds, nicotine)

Housekeeping activities such as cleaning and dusting

Maintenance activities such as painting (eg. Volatile organic compounds)

Spills of water or other liquids

Special use areas such as print shops and laboratories

Industrial processes such as dry cleaning

Moisture affected building materials (eg. mould and bacteria)

Sources of contaminants from outside the building may include:

Asbestos Register

Vehicle exhaust

Pollen and dust (eg. long term build up if cleaning regime is inadequate)

Smoke

Unsanitary debris or dumpsters near the outdoor air intake

Depending on the complaint reported by building occupants, an indoor air quality investigation should include the following:

Interview with building occupants to identify potential causes such as identifiable odours, recent changes that may have caused the issue, water intrusion event, increased occupancy, cleaning regime, etc.

Assessment of the ventilation rate (generally when the indoor carbon dioxide levels are over 650 parts per million (ppm) above ambient outdoor levels)

Walkthrough inspection of the building and the ventilation system (filters, cooling coils, condensation trays, air ducts, etc.)

Sampling for airborne contaminants suspected to be present in concentrations associated with the reported complaints.

Documenting the complaint, the investigation, and any actions taken.

Occupant concerns regarding indoor air quality should be taken seriously and responded to as soon as possible. Initial information should be collected, checked and verified, preferably through interviews with occupants and a visual inspection:

Details about the specific complaint

Location(s) of the building where similar concerns about IAQ have been reported

Time of occurrence of the IAQ problem

When and where did it start and what has changed in the building just before the problem was first experienced

People affected and extent of the affected area(s)

Specific details on the health effects or discomfort occupants are experiencing

If the health effects stop soon after leaving the building, or over the weekend

If the symptoms have been diagnosed by a medical practitioner

If there are any identifiable practices inside or outside the building occurring at a time coinciding with the reported issues

If the air conditioning contractor or the building engineer evaluated the HVAC system or other conditions and the conclusions reached

Once the information above is gathered and analysed the walkthrough inspection by a specialist indoor air quality consultant should be undertaken to identify potential sources of contamination or unusual conditions. Generally, at this stage the IAQ consultant should be able to narrow the possibilities and developing air sampling strategy if required to confirm potential causes of the IAQ problem and decide on suitable solutions or if further investigation is required.

Generally, most IAQ issues can be resolved by addressing maintenance issues of the HVAC system (eg. air exchange rates, improved ventilation and air flow, filter change and disinfection of the internal surfaces of the air handling unit and the air ducts), HEPA vacuuming of the entire space, building repairs, addressing moisture issues, removing potential sources of contamination, implementing a new cleaning regime).

Under the Work Health &amp; Safety Legislation, it is the duty of the person conducting a business or undertaking (PCBU) to provide a work environment that is free from risks to health and safety.

If you require assistance regarding the indoor air quality at your workplace please contact SESA on 02 8786 1808

First posted here https://www.sesa.com.au/14-indoor-air-quality/office-indoor-air-quality-investigating-iaq-complaints.html - Comments: 0

Asbestos Exposure & Risk of Developing Asbestos Related - 24 Jan 2018 06:20

Tags:

Asbestos is a naturally occurring rock forming mineral silicate in fibrous form belonging to the serpentine and amphibole groups. It occurs naturally in large deposits on every continent in the world. There are six types of naturally occurring asbestos fibres of which only three have been used commercially in Australia. These included the serpentine: Chrysotile (white asbestos); and the amphiboles: Crocidolite (blue asbestos) and Amosite (brown or grey asbestos). The other three non-commercially used amphiboles included Tremolite, Actinolite and Anthophyllite.

Asbestos has been used in the ancient world of the Egyptians, Greeks and Romans. It is believed that as early as 4000 BC, asbestos fibres were used for wicks in lamps and candles. Between 2000-3000 BC, embalmed bodies of Egyptian pharaohs were wrapped in asbestos cloth. The Greeks and Romans documented the harmful effects of asbestos fibres on those who mined the silken material from ancient stone quarries noting a “sickness of the lungs” in slaves who wove asbestos into cloth.

The commercial use of asbestos commenced in the late 1800s in Australia in four main industries including Mining and Milling; Building &amp; Construction (for strengthening cement and plastics, for insulation, fireproofing and sound absorption); Ship Building (eg. insulation of boilers and steampipes) and the Automotive Industry (eg. vehicle brake shoes, gaskets and clutch pads).

There were over 3000 products (Asbestos Containing Materials or ACM) manufactured with asbestos fibres. The ACM fall into two broad categories: friable and non-friable (or bonded).

‘Friable’ is ACM that can be easily reduced to powder when crushed by hand, when dry. These materials can contain higher percentages of asbestos fibres and are easily or more likely to release airborne fibres into the environment with minimal disturbance. As such, they pose a greater risk to health. Friable materials must only be handled and removed by an asbestos removalist with Class A Asbestos Removal Licence. Examples of friable asbestos-containing materials include sprayed on fire retardants, insulation (eg. millboard, pipe insulation), sound proofing, the lining on some old domestic heaters, stoves and hot water systems and associated pipe lagging, the backing of sheet vinyl and linoleum floor coverings, thermal lagging, some vermiculite.

‘Non-friable’, or bonded ACM is used to refer to ACM in which the asbestos is firmly bound in the matrix of the material. These materials are unlikely to release measurable levels of airborne asbestos fibre into the environment if they are undisturbed. Therefore, they generally pose a lower risk to health. However, activities that may abrade the ACM such as drilling, grinding have the potential to release higher concentrations of airborne asbestos fibres into the environment. The non-friable ACM are mainly made up of asbestos fibres together with a bonding compound (such as cement), and typically contain up to 15 per cent asbestos. Non-friable ACM are solid, quite rigid and the asbestos fibres are tightly bound in the material. Non-friable ACM are the most common in domestic houses. They are commonly called ‘fibro’, ‘asbestos cement’ and ‘AC sheeting’. Examples of non-friable ACM include asbestos cement products (flat, profiled and corrugated sheeting used in walls, ceilings and roofs, moulded items such as downpipes) and vinyl floor tiles.

While asbestos is a hazardous material it can only pose a risk to health if the asbestos fibres become airborne in respirable size, are inhaled and lodge deep into the lungs (in the alveoli). Inhalation is the main route of entry to the body. Respirable fibres are fibres that are more likely to reach the small airways and alveolar region of the lung and are defined as having a length of more than five microns, and an aspect ratio (length/width) greater than 3:1.

Asbestos is classified according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) as Carcinogenicity Category 1A (May cause cancer).

There are several asbestos related diseases that may result from the exposure to asbestos which depends on factors such as fibre type; size and shape of fibres; concentration of asbestos fibres in the inhaled air and period of time over which the person was exposed. The asbestos related diseases include:

Asbestosis

Pleural plaques

Safety &amp; Environmental Services Australia

Malignant mesothelioma of the pleura and peritoneum

Lung cancer

Benign asbestos pleural effusion

Progressive pleural fibrosis (diffuse pleural thickening)

Transpulmonary bands (crow’s feet)

Rounded atelectasis

All asbestos related diseases have a latency period that is the period commencing from the time of the exposure to the asbestos fibres first occurred until symptoms of a disease show. This may range from 10 – 50 years for the asbestos related diseases.

Workplace exposures to asbestos fibres first occurred while mining asbestos, manufacturing asbestos containing products or using those products during the construction of buildings. Currently, the main source of exposure to asbestos fibres is during the maintenance, renovation or demolition of old buildings with asbestos containing materials.

Asbestos containing materials are subject to environmental weathering which causes them to breakdown and release asbestos fibres. Low levels of airborne asbestos fibres are encountered in the environment from the breakdown of asbestos products. Environmental weathering of asbestos cement sheets in roofing and wall cladding, disturbance of asbestos from a variety of building materials like insulation and asbestos release to air from clutches and brakes in cars and trucks results in asbestos fibres being dispersed in the environment.

According to Australian Government Department of Health website, we are all exposed to low levels of asbestos in the air we breathe every day. Ambient or background air usually contains between 10 and 200 asbestos fibres in every 1000 litres (or cubic metre) of air (equivalent to 0.01 to 0.20 fibres per litre of air). However, most people do not become ill from this exposure, because the levels of asbestos present in the environment are very low. Most people are also exposed to higher levels of asbestos at some time in their lives; for example, in their workplace, community or home. However, for most people, this kind of infrequent exposure is also unlikely to result in any ill effects.

Safe Work Australia states that “the typical environmental background in outdoor air is 0.0005 fibres/ml and 0.0002 fibres/ml in indoor air. The daily inhalation volume for an average adult is 22 m3 or 22000 litres. This means 5500 fibres are breathed/day by the average person (proportion of time spent indoors = 20 hours/day). Despite this the general population does not contract asbestos related disease in significant numbers. The background rate of mesothelioma is less than one per million per year. By comparison, the annual death rate for a 40 year old male in 2008 was 1.6 per thousand or 1600 per million. However, there is no absolutely safe level of exposure to asbestos fibres.

Most people who develop asbestos related diseases were workers who have worked on jobs where they frequently breathed in large amounts of asbestos fibres. As an example, construction workers using unsafe practices in the past may have frequently encountered asbestos fibre levels significantly higher than those levels found in the background. The current workplace exposure standard (time weighted average (TWA) over an eight-hour period) is 0.1 fibres/millilitre of air (100 fibres per litre which is between 500 and 10,000 times the background levels). In the past, workers in asbestos milling or mining often encountered fibre concentrations a million times higher than background levels. In 2011, 606 deaths were caused by mesothelioma and 125 deaths were caused by asbestosis in Australia.

Family members of exposed workers or those who lived close to active asbestos mines in the past are also at risk. A worker exposed to asbestos fibres or a home renovator can carry asbestos fibres on their clothing, boots, skin, hair and tools. Everyone should be alert to ensure they do not become exposed to these fibres.

A very small number of asbestos-related disease cases occur each year in people who have not worked with asbestos products. The low number of cases makes it difficult to determine the exact cause of the disease or the likely exposure event, but unsafe handling of asbestos materials in the home may have contributed to some of these cases.

The uncontrolled disturbance of asbestos containing materials must be avoided at any time to prevent the release of airborne asbestos and increase the risk of exposure to airborne asbestos fibres. The exposure to airborne asbestos fibres should be reduced to as low as reasonably practicable by managing asbestos containing materials in-situ and adopting safe work practices as required by the Work Health &amp; Safety Regulations and Safe Work Australia Codes of Practice “How to Manage &amp; Control Asbestos In the Workplace”: and “ How to Safely Remove Asbestos”.

If you require assistance in asbestos inspection, asbestos testing or asbestos assessment contact SESA on 02 8786 1808.

First posted here https://www.sesa.com.au/15-asbestos/asbestos-exposure-risk-of-developing-asbestos-related-disease.html - Comments: 0

page 1 of 41234next »

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License